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1 II. Institut für Theoretische Physik, Universität Hamburg, Germany
2 Theory Division, CERN, Switzerland
3 Deutsches Elektronen Synchrotron DESY, Germany
4 University of Durham, Department of Physics, Durham DH1 3LE, UK

Received: 30 June 1998 / Revised version: 3 September 1998 / Pulished online: 3 December 1998

Abstract. We propose a simple parametrization for the deep-inelastic diffractive cross section. It contains
the contribution of qq̄ production to both the longitudinal and the transverse diffractive structure functions,
and of the production of qq̄g final states from transverse photons. We start from the hard region and
perform a suitable extrapolation into the soft region. We test our model on the 1994 ZEUS and H1 data,
and confront it with the H1 conjecture of a singular gluon distribution.

1 Introduction

Diffractive events are characterized, in general, by the
presence of large rapidity gaps in the hadronic final state
that are not exponentially suppressed. These are conven-
tionally ascribed to Pomeron exchange. Diffractive pro-
cesses in deep-inelastic scattering (DIS) are of particu-
lar interest, because the hard photon in the initial state
gives rise to the hope that, at least in part, the scat-
tering amplitude can be calculated in perturbative QCD
(pQCD). With the increasing amount of data on diffrac-
tive DIS [1,2], we have reached a level of accuracy that
provides deeper insight into the nature of the Pomeron
and its coupling to partons. Rapidity-gap events make up
a sizable fraction of all DIS events, and can only be due to
the exchange of some colourless object in the cross chan-
nel. The simplest realization of the Pomeron in pQCD
is provided by two gluons of opposite color [3]. More de-
tailed models based upon the two-gluon picture have been
formulated both for perturbative gluons [4,5] and for non-
perturbative (massive) gluons [6–8]: for an alternative ap-
proach, see [9]. In this paper we take the point of view that
perturbative QCD provides a reasonable starting point,
as in the more detailed model described in [4,10]. In the
present paper, we develop a simple parametrization based
on this model, which can easily be compared with exper-
imental data.

The simplest description of diffractive DIS starts from
the process of qq̄ production. This process is conveniently
described in terms of light-cone wave functions [7,11,12]
in the proton rest frame. The light-cone wave function of
the photon contains the information about the dissocia-
tion of the fast-traveling photon into partons, long before
the interaction with the proton occurs. At the beginning
of the scattering process, the photon splits into a quark-
antiquark pair. At sufficiently large photon virtuality Q2,

the quark-antiquark pair radiates additional gluons before
it reaches the proton at rest. At the time of the interac-
tion, the partonic system is spread over a transverse area
which is comparable with the size of the hadron. One ex-
pects therefore that the exchanged Pomeron should be
close to the usual soft hadronic Pomeron. However, in-
side the final state of the partonic system, we expect that
there are also “hard” configurations, for which the ex-
changed Pomeron should behave quite differently. These
are final states for which the partonic system is confined to
small transverse distances. Examples are longitudinally-
polarized vector particles [12] and high-pT jets [13,14]. In
the inclusive measurement of diffractive final states, one
sums over both these small-distance and large-distance
configurations. So far there is no theoretical framework
which allows one to predict the relative magnitudes of the
“soft” and the “hard” components of the diffractive cross
section, which must be determined by experiment1. Since
the cross section for the “soft” component is expected to
rise weakly with energy for any fixed mass of the diffrac-
tive system, whereas the “hard” part should rise faster,
the energy dependence of the diffractive cross section may
help to determine the relative sizes of the two components.

In attempting to formulate a model that interpolates
between these two components, one finds that perturba-
tive models based upon two-gluon exchange, which are
valid a priori only for small-size final states, allow a
smooth extrapolation into the soft region. Thanks to
gauge invariance and colour cancellation, one does not en-
counter infrared singularities in models for qq̄ production
or qq̄g production, i.e., there is no need for an artificial

1 It was pointed out in [15] that the pseudo-rapidity cuts
imposed in certain early analyses selected a “hard” component
in diffractive DIS, which must also be present, at some level,
even in analyses without this a priori selection
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cutoff. Moreover, the wave-function formalism can be ex-
tended to include multi-gluon exchange, which is useful
for going beyond the lowest-order two-gluon exchange.

Since the first observation of diffractive DIS at HERA,
several attempts have been made to compare the data
with QCD-based models. In particular, the concept of the
Pomeron structure function and its DGLAP Q2 evolution
has been applied [16–18,2]. In these analyses, the diffrac-
tive cross section has been assumed to consist only of lead-
ing twist. On the other hand, there is strong evidence that,
for small masses of the diffractive system, the longitudi-
nal cross section for qq̄ production - although formally of
higher twist - is not small compared to the transverse cross
section. We therefore feel that a more complete analysis
of the HERA data should include the longitudinal cross
section, and particular emphasis should be given to the
region of small diffractive masses. As a minimal model,
one might consider just the production of quark-antiquark
pairs, which should dominate the small-mass region. For
somewhat larger masses, the production of an extra gluon
has to be taken into account. In a future step, one would
also have to address the Q2 evolution of both the trans-
verse and the longitudinal cross sections.

In this paper we propose and test a simple parametri-
zation of the diffractive cross section that is motivated
by the above considerations. Stimulated by perturbative
QCD, we make an ansatz that consists of four terms, which
model both the transverse and the longitudinal cross sec-
tions for qq̄ and qq̄g production. By treating the overall
strength of these terms and the exponent of the energy
dependence as a free parameter, we let the data decide
which fractions of the diffractive cross section belong to
the “soft” and “hard” parts. After a brief description of
the model, we compare this Ansatz with the ZEUS and
H1 1994 data, and finally draw a few conclusions.

2 A parametrization for diffractive DIS

2.1 Theoretical motivation

The main variables used for the description of diffractive
DIS are the total hadronic energy W of the γ∗-proton
system and the diffractively-produced mass M . In the
analysis of the diffractive structure function, it is conve-
nient to use also the variables β and xIP . In terms of W
and M , one has β = Q2/(M2 + Q2) and xIP = (M2 +
Q2)/(W 2 +Q2), where we have neglected the proton mass
and the momentum transfer t. To connect these variables
with the Bjorken scaling variable xB , we recall that xB =
Q2/(W 2 + Q2), which immediately leads to xB = βxIP .

Before describing our model in somewhat more detail,
we first make a few general remarks. First, we expect the
cross section to be dominated by very small t values. After
integration over final-state kinematic variables, the t de-
pendence and the strength of the coupling of the Pomeron
to the proton will be combined in the overall normaliza-
tion. Next, the β spectrum and the Q2-scaling behavior
follow from evolution of the final-state partons, and can
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Fig. 1. Wave function of the photon, including a a qq̄ compo-
nent, b a qq̄g component

most easily be derived from the light-cone wave functions
of the incoming photon. This part of our model therefore
decouples from the dynamics inside the Pomeron. On the
other hand, the energy dependence of the Pomeron, i.e.,
the xIP -distribution, can be calculated at most only par-
tially within perturbative QCD. We therefore leave it as
a free parameter.

We have already indicated that, in the proton rest
frame, the light-cone wave function formalism provides a
nice intuitive description of diffractive DIS. At leading or-
der, when the photon dissociates into a quark-antiquark
pair, we have a single color dipole with a certain momen-
tum distribution given by the corresponding wave func-
tion. At higher order, more partons are generated and the
initial state can be rather complex. At leading-twist level,
however, the basic structure is again a single color dipole:
all partons (gluons or quarks) but one are located within
a small area in impact-parameter space, i.e., at short rela-
tive distances, whereas the remaining single parton is well
separated. The localized parton subsystem carries color
conjugate to that of the single parton, so that one has
again a color-dipole configuration. The short-distance evo-
lution within the parton subsystem factorizes, so one only
needs to introduce a wave function for the momentum
distribution of the single parton. With this simplification,
we end up with two basic structures: a quark-antiquark
dipole and a gluon-gluon dipole, the latter appearing only
at higher order.

In the case of the elementary quark-antiquark final
state, the wave function depends on the helicities of the
photon and of the (anti)quark. We define left- and right-
handed transverse photons by projecting on the polariza-
tion vectors (1,i) and (1,-i) (γ = ±1), respectively, and
the longitudinal polarization vector is proportional to the
proton momentum p (γ = 0). For massless quarks, the
spin is orientated along the direction of motion or oppo-
site to it (h = ±1). As variables for the wave function,
we use the Sudakov parameters k = αq′ + βkp + kt with
q′ = q + xBp. In the proton rest frame with a fast-moving
photon, the parameter α is of the order unity and denotes
the momentum fraction of the photon momentum carried
by the quark (Figs. 1a, 2), whereas βk is small and may be
neglected. Using a complex notation for kt: k = kx + iky,
k∗ = kx − iky, one finds for the transverse photon (see
also [11]):
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Fig. 2. Interaction with the proton, modelled in
the two-gluon exchange approximation

Ψγ
h (α, kt) =




−
√

2 (1 − α) kt

|kt|2 + α(1 − α)Q2

for γ = +1 and
and h = +1

√
2 α kt

|kt|2 + α(1 − α)Q2

for γ = +1 and
h = −1

√
2 α k∗

t

|kt|2 + α(1 − α)Q2

for γ = −1 and
h = +1

−
√

2 (1 − α) k∗
t

|kt|2 + α(1 − α)Q2

for γ = −1 and
h = −1

(1)

Similarly, for the longitudinal photon one finds:

Ψγ
h (α, kt) = 2

α(1 − α) Q

|kt|2 + α(1 − α)Q2

for γ = 0 and h = ±1 (2)

Here Q2, γ and h denote the virtuality of the photon and
the helicities of the photon and the quarks, respectively,
and the wave function includes the propagator of the off-
shell quark carrying the momentum k. In the following,
we shall make use of the small-kt behavior of (1) and (2).

To produce a gluon dipole (Fig. 1b), we have again
to start from the approximation described previously, be-
cause a direct coupling of photons to gluons is lacking. In
the leading-log(Q2) approximation, transverse momenta
are strongly ordered, which translates into the inverse or-
dering of distances in impact-parameter space. The quark-
antiquark pair with a large transverse momentum is local-
ized in impact-parameter space, and forms an effective
“gluon” state conjugate in color to the emitted gluon,
which has a smaller transverse momentum and is sepa-
rated by a large distance from the quark-antiquark pair.
In this approach only the transverse photon polarization
is of importance, and it determines the hard part of the
process, i.e., the effective gluon dipole is independent of
whether the photon is right- or left-handed. The wave
function of the gluon dipole has the following tensor struc-
ture (the indices µ, ν = 1, 2, since only the transverse com-
ponents are involved):

Ψµν(α, kt) =
1√

α(1 − α)Q2

k2
t gµν

t − 2 kµ
t kν

t

k2
t + α(1 − α)Q2 . (3)

where α and kt refer to the diffractively-produced gluon.
We have written explicitly the (1 − α) term, even though

the approximation applied here requires α to be much less
than 1, so that (1−α) ∼ 1. We have introduced this term
in order to make manifest the analogy to the previous ex-
pression for the quark dipole. Our main interest is, again,
the behavior of (3) near kt = 0.

So far we have discussed the photon wave functions
which describe the qq̄ or qq̄g state after the splitting of the
photon into the quark-antiquark pair. In order to obtain
the diffractive scattering amplitude, we have to include the
interaction with the proton target. Beginning with the qq̄
final state, this interaction is represented in Fig. 2. It is
essential that the two gluons couple in all possible ways
to the two quarks. In the proton rest frame, the lower
quark with momentum k emits a gluon which, after the
interaction with the proton, is reabsorbed by one of the
two quarks. A more detailed discussion of this two-gluon-
exchange model has been given elsewhere [10]. Here we
only briefly describe a few main features that we need in
order to motivate our parametrization. The coupling of
two t-channel gluons with zero net color and transverse
momenta lt and −lt to the color dipole, i.e., to any wave
function of type (1), (2), or (3), can be obtained simply
by taking differences of the wave function:

DΨ := 2 Ψ(α, kt) − Ψ(α, kt + lt) − Ψ(α, kt − lt)

'
{

−litl
j
t

∂2Ψ(α,kt)
∂ki

t∂kj
t

for lt → 0
2 Ψ(α, kt) for lt → ∞

(4)

and then convoluting with a suitable ansatz for the l2t
dependence of the Pomeron form factor of the proton.

It is an important feature of our two-gluon model that
our simple wave functions (1), (2), (4), together with a
suitable ansatz for the Pomeron amplitude, provides an
interpolation between the hard and the soft region. In
particular, one finds that the transverse polarization be-
longs to leading twist and is dominated by the aligned-jet
configuration, whereas the longitudinal polarization of the
photon leads to a higher-twist contribution. In order to see
this behavior in the wave-function formalism, we note the
relation between the diffractive structure functions FD

and our wave functions

FD(xIP , β, Q2) ∼ β

∫
dt

∫
k2

t d2kt

(1 − β)2
(5)

×
∣∣∣∣
∫

d2lt
l2t

DΨ(α, kt) φ(l2t , k
2
0;xIP )

∣∣∣∣
2
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Fig. 3. Two-jet production in the γ∗-IP center-of-mass system

where DΨ is taken from (4), and φ(l2t , k
2
0;xIP ) stands for

the Pomeron amplitude. Here k2
0 denotes some hadronic

scale which separates the regions of soft and hard QCD: it
should not be confused with the QCD factorization scale.
The variables α, β, k2

t , and M2 are related through

α(1 − α)M2 = k2
t , (6)

and β = Q2/(Q2 + M2). A simple choice for the lt depen-
dence is [13]

φ ∼ 1
k2
0

(
k2
0

l2t

)ν(l2t /k2
0)

(7)

where ν(l2t /k2
0) ≈ 1 as l2t � k2

0, and ν(l2t /k2
0) → 0 as

l2t → 0.
We start in that part of the kinematic region where

the parton model of Fig. 2 is most reliable, i.e., the re-
gion where the virtuality of the quark with momentum k
is large: k2

t + α(1 − α)Q2 = k2
t /(1 − β) > k2

0 [13]. In this
final-state configuration, the qq̄ pair has a small transverse
size, and the two-gluon Pomeron interacts with the whole
system. Consequently, both contributions of Fig. 2 are im-
portant, and the simple picture of a “Pomeron structure
function“, which would be suggested if only Fig. 2a were
taken into account, does not apply2. In this region, the
Pomeron amplitude φ(l2t , k

2
0;xIP ) coincides, to a good ap-

proximation, with the unintegrated gluon structure func-
tion of the proton:∫ k2

t /(1−β)

dl2t φ(l2t , k
2
0;xIP ) = xIP g(xIP , k2

t /(1 − β)) (8)

(for the extrapolation into the region of smaller kt and for
a discussion of the dependence on xIP , see below). Going
into more detail, let us look into the dependence upon k2

t

and α at fixed Q2. In the lt integral, it suffices to note that
the dominant region is k2

0 < l2t < k2
t + α(1 − α)Q2: in our

example (7), φ ∼ 1/l2t , and the dominant contribution, in
fact comes from this kinematic domain. In this region, we
approximate DΨ in (4) by the limit lt → 0, and obtain:

∫ k2
t +α(1−α)Q2

k2
0

d2lt
l2t

φ(l2t , k
2
0;xIP )DΨ

∼ α(1 − α)|kt|Q2

(k2
t + α(1 − α)Q2)3

xIP g(xIP , k2
t + α(1 − α)Q2)

2 This point has previously been emphasized in [15]

=
β(1 − β)2

k2
t |kt| xIP g(xIP , k2

t /(1 − β)) (9)

Inserting this into (5) and making use of relation (6), we
find that the integral over k2

t (at fixed β) is dominated by
the lower limit k2

0. In terms of the variable α, this lower
limit corresponds to α ∼ k2

0/Q2 or 1 − α ∼ k2
0/Q2. The

final result for (5) is constant in Q2, i.e., it is of leading
twist. The end points of the α integral correspond to the
aligned configuration: in the center-of-mass system of the
quark-antiquark pair (Fig. 3), α is related to the scatter-
ing angle θ through 2α = 1 − cos θ, and the dominant
regions are θ = 0, π. In other words, starting in the hard
region of large transverse momenta, we find that the main
contribution comes from the lower end of the kt integral,
i.e. we find ourselves pushed into the soft region where our
perturbative ansatz for the Pomeron becomes invalid.

A similar argument applied to the longitudinal case
shows that the dominance of small k2

t (or values of α close
to zero or one) is less pronounced: instead of (9), we now
have

∫ k2
t +α(1−α)Q2

k2
0

d2lt
l2t

φ(l2t , k
2
0;xIP )DΨ

∼ α(1 − α)
√

Q2(α(1 − α)Q2 − k2
t )

(k2
t + α(1 − α)Q2)3

×xIP g(xIP , k2
t + α(1 − α)Q2)

=
β(1 − 2β)(1 − β)

k2
t Q

xIP g(xIP , k2
t /(1 − β)). (10)

Inserting this into (5), we see that for small k2
t the in-

tegral diverges only logarithmically. Also, in contrast to
the transverse case, the result is of order 1/Q2 and hence
belongs to nonleading twist. On the other hand, the in-
tegration over k2

t now yields an additional logarithm in
Q2/(4βk2

0), which is absent in the transverse leading-twist
case, and slightly compensates for the Q2 suppression.

Next we return to the transverse case and take a closer
look at the soft region where k2

t + α(1 − α)Q2 < k2
0, i.e.,

k2
t < (1 − β)k2

0 and α < βk2
0/Q2 or 1 − α < βk2

0/Q2. Now
the quark with momentum k in Fig. 2a, before it interacts
with the two-gluon Pomeron, is nearly on shell, and one
expects the picture of the Pomeron structure function to
become valid, i.e., the lower parton in Fig. 2a can be con-
sidered more as a “valence” constituent of the Pomeron,
and the contribution of Fig. 2b should be less important.
This transition can be made explicit by changing the l2t
dependence of the Pomeron amplitude, which now can
no longer be identified with the unintegrated gluon struc-
ture function, in such a way that is gives more weight
to the region l2t < k2

0: the simple example in (6) leads
to φ ∼ 1/k2

0 = constant. The correct behavior is ob-
tained simply by taking in (4) l2t much larger than k2

t , i.e.,
lt → ∞: in this region the first term 2 Ψ(α, kt) dominates,
and we end up with

∫
d2lt
l2t

φ(l2t )DΨ ∼ |kt|
k2
0(k

2
t + α(1 − α)Q2)
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× ln
(

k2
0

k2
t + α(1 − α)Q2

)

=
1 − β

k2
0|kt| ln

(
(1 − β)k2

0

k2
t

)
(11)

which corresponds to the planar diagram Fig. 2a (on the
rhs of (11), we have disregarded the dependence upon xIP ).
Returning to (5), the integral in k2

t can easily be performed
and leads to a finite leading-twist result. By similar argu-
ments the longitudinal case is found to be of the order
1/Q2.

In summary, with a suitable Ansatz for the lt depen-
dence of the two-gluon Pomeron or, even more simply,
with a simple prescription for the lt integral, it is possible
to interpolate between the hard region where the parton
model applies and the soft region where the aligned jet
configuration dominates. For the latter case we seem to
have arrived at the same conclusions as Bjorken [21], al-
though with a somewhat different line of arguments. But,
as we shall argue further below, there is a new element
that we have to take into account, namely the observation
of the strong rise of the gluon structure function at small
x, which gives a weight to the region of large transverse
momenta which is larger than was anticipated before the
advent of the HERA data in, for example, [21].

Before we turn to the xIP dependence of the cross sec-
tion, let us mention that the momentum dependence of
the qq̄g final state is quite analogous to that of the qq̄ sys-
tem. We do not show the analogue of Fig. 2: it is again
essential that the two gluons couple to the diffractive sys-
tem in all possible ways. As before, one has to start in
the region where the transverse momenta of all three par-
tons are large. When trying to integrate over the trans-
verse momentum of the gluon, one finds dominance by the
low-momentum region: in this region, all nonplanar cou-
plings of the two gluon lines of the Pomeron to the diffrac-
tive state become less important, and we are left with the
leading-twist ‘Pomeron structure function’ picture, where
the Pomeron interacts only with the gluon and not the
quarks.

Next we adress the xIP dependence of the cross sec-
tion. So far we have drawn a rather simple picture of the
diffractive final state: both for the qq̄ and the qq̄g final
state, we have argued that in the preferred configuration
at least one of the final-state partons has a rather soft
transverse momentum, and it is this parton which couples
to the Pomeron. If the virtuality of this parton is charac-
terized by a typical hadronic scale ∼ ΛQCD, this seems to
imply that the energy dependence of the diffractive cross
section should be the same as in hadron-hadron scatter-
ing, i.e., the diffractive structure function FD

2 grows as
(1/xIP )nIP with nIP = 2αIP (0) − 1 ≈ 1.12. However, be-
cause of the observed rise of the gluon structure function
at small x, the situation is more complicated. Let us re-
turn to the above discussion of the qq̄ final state. The
perturbative region is that of large transverse momenta of
the final-state partons. For this part of the phase space,
we expect the Pomeron to be described by the perturba-
tive two-gluon model, i.e., the x dependence of the cross

section will be given by the square of the gluon structure
function of the proton [13]:

dσ

dM2dtdk2
t

∼ [xIP g(xIP , k2
t /(1 − β))]2 (12)

This should lead to a rise FD
2 ∼ (1/xIP )nhard where nhard

= 2αhard − 1 grows with the transverse momentum k2
t of

the partons, and typically lies above the value 1.4. For the
kinematic region where the quark transverse momenta are
small and our perturbative two-gluon Pomeron has to be
replaced by some model for the nonperturbative Pomeron,
we expect a smaller exponent n: the conventional soft
Pomeron would suggest that n = nIP = 2αIP (0)−1 ≈ 1.12.
Since in the diffractive cross section we integrate over both
the perturbative and nonperturbative parts of the phase
space, there will be competition between the two regions.
At first sight, the large-momentum region seemed to be
rather subdominant. However, the large gluon structure
function provides an enhancement of this region, and in
this way weakens the dominance of the soft nonperturba-
tive region. As a result, the effective value of the exponent
n, neff , is expected to lie somewhere between the soft
and the hard values, and the effective scale at which the
kt integral peaks should be somewhat higher than the soft
Pomeron scale. Theoretical studies [19] indicate that neff

only weakly depends upon Q2, but they do not allow us
to predict the numerical value of neff or the momentum
scale.

2.2 The parametrization

After this brief theoretical review, we are ready to de-
scribe and motivate our parametrization. It will be given
in terms of the diffractive structure function FD

2 , and can
be written as the sum of several distinct contributions. In
our fit we include the following four pieces:

FD
2 = FT

qq̄ + FT
qq̄g + ∆FL

qq̄ + ∆FT
qq̄. (13)

Here the first and the second term, as indicated by the
subscripts and by the superscripts, denote the production
of a quark-antiquark pair and the production of a quark-
antiquark-gluon system with transversely-polarized pho-
tons. The third term takes into account the production
of a quark-antiquark pair from a longitudinally-polarized
photon, and the prefix ∆ indicates that this contribution
belongs to higher twist (twist four). We have also included
a transverse higher-twist contribution to qq̄ production,
denoted by ∆FT

qq̄

Let us discuss these terms in more detail. To begin
with the Q2 dependence of (11), we recapitulate that in
the leading-twist transverse contribution to qq̄ production
there is no log(Q2/Q2

0)-enhancement from the phase-space
integral, whereas qq̄g production is of higher order in αs

and has an αs ln(Q2/Q2
0) dependence. The third term, the

longitudinal cross section of the qq̄ final state, belongs
to higher twist, and the phase-space integral provides a
log(Q2/Q2

0) enhancement. The reason why this contribu-
tion is essential will be discussed below. The longitudinal
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Fig. 4. Fit compared to 1994 ZEUS data. Up-
per solid line: total result, dashed line: F T

qq̄, dot-
ted line: F T

qq̄g and dashed-dotted line: F L
qq̄

contribution of the qq̄g final state is again of leading twist,
but the logarithm is absent. It is therefore subleading in
comparison with the transverse contribution, and will be
disregarded in our parametrization.

To get an estimate of the β spectrum, we consider the
limits β → 1 and β → 0. Contact with the other variables
is made through the kinematic relation (6). For the β de-
pendence of the longitudinal cross section we can use (10)
and (5): for the transverse case the situation is slightly
more complicated, and we have to use both (9) and (11),
in combination with (5). A more intuitive argument can
be derived from the wave functions, and goes as follows.
The limit M → 0, which is the same as β → 1, is related to
the small-kt behavior of the cross section. Let us return
to the wave function (4). For both of the limits lt → 0
and lt → ∞, one finds that when kt approaches zero DΨ
vanishes with the same power in kt as the orginal wave
function. (In (3), where the denominator is quadratic in

kt, the integration over the azimuthal angle of lt leads to
the final cancellation of nonvanishing contributions.) This
means that characteristic features of the light-cone wave
functions (Ψ0, Ψ±, Ψµν) remain unchanged after scatter-
ing. We expect that these results also hold for multi-gluon
exchange. It is important to note that a single gluon (or
photon) exchange, as opposed to the color-singlet two-
gluon exchange, leads to a rather different spectrum at
β ∼ 1. This is because, instead of the second-order deriva-
tive in (4), in this case only the first derivative of the wave
function is needed, which, unlike the second derivative,
does not vanish when kt approaches zero.

Applying these arguments to our wave functions we
find, first for the the transverse quark-antiquark produc-
tion cross section, that the cross section behaves like (1 −
β) (Ψ± ∼ Qkt from (1) and M ∼ kt from (6)), i.e., it
vanishes when M becomes zero. For the second contribu-
tion with one gluon in the final state and with the tensor
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Fig. 5. The β spectrum at fixed xIP = 0.001.
Upper solid line: total result, dashed line: F T

qq̄,
dotted line: F T

qq̄g, dashed-dotted line: F L
qq̄ and

lower solid line: ∆F T
qq̄

Fig. 6. The Q2 distribution at fixed
xIP = 0.001. The notations of the lines
are the same as in the previous figures

structure Ψµν ∼ kµ
t kν

t − 2|kt|2gµν
t , the cross section van-

ishes like (1 − β)2. The subsequent integration over the
quark-antiquark final state introduces a further suppres-
sion, leading to a (1 − β)3 behavior. Finally, for the wave
function (2) of longitudinally-polarized photons, we find
that Ψ0 ∼ Q, i.e., the cross section goes to a constant
different from zero: this means that near β = 1 the longi-
tudinal cross section dominates and cannot be neglected.
The other limit β → 0 or M → ∞ is dictated by the
high-energy behavior of the amplitudes, which is different
for quark and gluon exchange. Spin-1/2 exchange is sup-
pressed relative to spin-1 exchange, which leads to a dom-
inance of gluon production at small β over the leading-
order quark-antiquark production. We conclude that our
three contributions, transverse qq̄ and qq̄g production and
longitudinal qq̄ production, are important in rather dis-

tinct regions in β, namely medium, small, and large β,
respectively. The transverse higher-twist contribution is
expected to give a small negative correction which is due
to phase space limitations at finite Q2 [20].

Finally, we comment again on the energy dependence.
In contrast to the β spectrum, which can be traced back to
rather general properties of the wave functions, perturba-
tive QCD does not allow us to control the xIP dependence
of the cross section. In particular, neff for the leading-
twist transverse cross sections cannot yet be predicted,
and we therefore let the data decide on the preferred val-
ues of this exponent. As discussed at the end of the previ-
ous subsection, we expect a weak Q2 dependence. For the
higher-twist longitudinal part, on the other hand, theo-
retical arguments have been given which indicate that the
xIP dependence is given by the square of the gluon struc-
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Fig. 7. Pomeron intercept for leading twist (solid
line) and higher twist (dashed line)

Table 1.

mean value error lower limit upper limit
A 293 11 no no
B 166 25 no no
C 76 15 no no
D -184 2 no no
x0 0.001 0.00011 0.0001 1
γ 4.3 0.9 no no

n20 1.11 0.14 1 2
n21 0.12 0.12 0 1
n40 1 0.79 1 2
n41 0.43 0.12 0 1

χ2/d.o.f. 12/43

Table 2.

mean value error lower limit upper limit
A 16.8 8.4 no no
B 13.9 4.2 no no
C 10.5 2.6 no no
D 0 6.5 no no
x0 0.0033 0.00063 0.0001 1
γ 0.28 0.08 no no

n20 1 0.14 1 2
n21 0.19 0.024 0 1
n40 1.6 0.17 1 2
n41 0 0.82 0 1

χ2/d.o.f. 139/130

ture function at the momentum scale Q2/4β, i.e., it should
grow with Q2. In our fit we assume a universal xIP depen-
dence of all higher-twist terms. The exponent is allowed
to vary with Q2.

After these remarks, we finally write down our Ansatz
for the diffractive structure function. For the four terms
in (13) we put:

FT
qq̄ = A

(
x0

xIP

)n2

β(1 − β)

FT
qq̄g = B

(
x0

xIP

)n2

αs ln
(

Q2

Q2
0

+ 1
)

(1 − β)γ

∆FL
qq̄ = C

(
x0

xIP

)n4 Q2
0

Q2

[
ln

(
Q2

4Q2
0β

+ 1.75
)]2

×β3(1 − 2β)2 (14)

∆FT
qq̄ = D

(
x0

xIP

)n4 Q2
0

Q2 ln
(

Q2

4Q2
0β

+ 1.75
)

×β3(1 − β). (15)

The exponents are chosen to have the form

n2 = n2 0 + n2 1 ln
[
ln

(
Q2

Q2
0

)
+ 1

]

n4 = n4 0 + n4 1 ln
[
ln

(
Q2

Q2
0

)
+ 1

]
, (16)

and αs is set to 0.25.
As we have discussed before, the shapes of the β spec-

tra are restricted by properties of the light-cone wave func-
tions, and one finds for the parameter γ in FT

qq̄g the value
3. But, since the H1 analysis in [2] reports a rather hard
gluon distribution inside the Pomeron, we allow the pa-
rameter γ to deviate from the model prediction. For the
leading-twist (transverse) cross sections the exponent n2
will be left to the fit. We have introduced a simple Q2-
dependent function, although a weak dependence is ex-
pected theoretically. The xIP dependence of the-higher
twist contributions (n4), on the other hand, is expected
to be given by the square of the gluon structure function,
and in principle we could use the measured gluon struc-
ture function. We have inserted an extra log(Q2/(4βQ2

0))
in order to simulate the effect of having a structure func-
tion. For n4 we assume the same functional form as for
n2, but expect to find a stronger rise with Q2 than for
the leading-twist contributions. The parameter x0 was in-
troduced to minimize any effect from n2 and n4 on the
overall Q2 shape. The scale parameter Q2

0 is taken to be
1GeV 2.
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Fig. 8. The ZEUS fit compared to H1 data. Upper solid line: total result, dashed line: F T
qq̄, dotted line: F T

qq̄g and dashed-dotted
line: F L

qq̄

In our analysis we shall limit ourselves to that kine-
matic region which is common to the ZEUS and H1 data.
In this region the contribution of secondary reggeons to
FD

2 is negligable [1]. Therefore, such a term will not be
considered in our analysis.

Finally, we mention that, in principle, one should also
allow for higher-twist corrections to qq̄g production. How-
ever, even if we assume a universal xIP dependence for all

higher-twist pieces, this would increase the number of free
parameters. We have found that, with the presently avail-
able amount and accuracy of data, it is not yet possible
to determine these parameters with sufficient accuracy.
Therefore, these higher-twist pieces will not be included
in our fit.
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Fig. 9. The H1 fit compared to H1 data. Upper solid line: total result, dashed line: F T
qq̄, dotted line: F T

qq̄g and dashed-dotted
line: F L

qq̄

3 Fits to the data

ZEUS Data: We begin with a fit to the ZEUS data [1],
whose results are shown in Table 1 and Fig. 4. In the
fits the statistical and systematic errors of the data are
added quadratically. Some of the parameters have been
restricted to a physically meaningful range by imposing
upper and lower limits. We note that the form of the qq̄g
wave function in (3) leads to γ = 3: our fit, cf. the value of

γ in Table 1 and the dotted curves in Fig. 4, indicates that
the data prefer a larger value. The behavior of Fqq̄g near
β = 1 is therefore far from a ‘hard gluon distribution’ in
the Pomeron. Our fit shows that it is possible to describe
the ZEUS data without introducing a hard gluon inside
the Pomeron.

Figure 5 shows the β spectrum. One recognizes the
subdivision into three distinct regions: the small-β region
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Fig. 10. The H1 fit results, in the same notation as in previous figures

with qq̄g production, the medium-β region with transver-
sely-produced qq̄ pairs, and the large-β region where the
longitudinal part dominates. The sum of all three contri-
butions leads to a rather flat β spectrum.

The Q2 distribution in Fig. 6 has the expected shape:
it is logarithmically increasing at β = 0.1 (which we asso-
ciate with qq̄g production), constant for the leading-twist
transverse part at β = 0.5, and decreasing for the longitu-
dinal part at β = 0.9. The negative slope of the longitudi-
nal contribution, which is due to its higher-twist nature, is
partly compensated by the counteracting logarithm in Q2.
The higher-twist correction for the transverse part, which
is also decreasing when the absolute value is considered,
leads to a small positive slope at β = 0.5 in the combined
result.

The transverse higher-twist correction to qq̄ produc-
tion wants to be negative, as expected from theoretical
arguments [20]. Its absolute magnitude is rather small,
as can be seen in Figs. 5 and 6, and it represents a correc-
tion to the three leading pieces. As mentioned before, we
have also attempted to include higher-twist corrections to
the qq̄ production: with the available statistics it is not
possible to assert whether such a contribution is present
or not.

Although some of the parameters n2 0, ..., n4 1 have
substantial errors, their values, as determined from the
fit, lead to an appealing theoretical scenario. The value
n2 0 = 1.11 corresponds to an effective Pomeron inter-
cept αIP (0) = 1.055, which is consistent with the ‘soft‘
Pomeron of Donnachie and Landshoff. It exhibits, how-
ever, a slight rise with Q2, which suggests that in the

Table 3.

mean value error lower limit upper limit
A 1865 451 no no
B 1024 1.41 no no
C 422 1.41 no no
D 0 7.11 0 no
x0 0.0002 0.000012 0.0001 1
γ 8.55 0.8 no no

n20 1.16 0.026 1 2
n21 0 0.047 0 1
n40 1.44 0.093 1 2
n41 0 0.11 0 1

χ2/d.o.f. 150/130

leading-twist transverse cross section the Pomeron is al-
ready a mixture of the soft Pomeron and the gluon struc-
ture function. According to our discussion above, this
means that the effective momentum scale of the aligned-
jet configuration in qq̄ production is slightly higher than
the typical hadronic scale of the soft Pomeron. The inter-
cept for the higher-twist contribution (the dashed line in
Fig. 7), on the other hand, shows a strong rise with in-
creasing Q2. It tends towards a value of 1.2 at large Q2,
which is compatible with the gluon structure function, i.e.,
the Pomeron is hard in this case.

It is also interesting to compare the ZEUS fit with data
from H1. Figure 8 shows all H1 data points with the ZEUS
fit result overlaid. The agreement is quite good when all
points above xIP = 0.01 are ignored. The strongest devi-
ation is observed in the β = 0.2 bin at low Q2. Here the
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Fig. 11. The H1 fit compared to the ZEUS
data. Upper solid line: total result, dashed line:
F T

qq̄, dotted line: F T
qq̄g and dashed-dotted line:

F L
qq̄

ZEUS fit lies considerably above the H1 data. The over-
all impression, however, is that in the kinematic range
where the Pomeron dominates over secondary trajecto-
ries, both data sets are consistent. We find remarkable
the good agreement between the H1 data and the ZEUS
fit at β = 0.9 and low Q2, since this region is not cov-
ered by ZEUS data. The fit seems to provide here a good
extrapolation. In summary, we have shown that it is possi-
ble to describe the ZEUS data using the first three terms
in (12),the fourth term providing a small correction. In
particular, there is no need for a hard gluon inside the
Pomeron. Furthermore, our fit is quite consistent with
our theoretical expectations: the parameter γ as well as
the exponents n2 and n4 have chosen values which seem
to confirm the ideas outlined in the previous section.

H1 Data: Next we turn to the H1 data and describe
the results of our fit to them. Most remarkable is the fact
that we find two different solutions. The parameters of the

first solution are given in Table 2, and the corresponding
comparison of fit and data can be found in Fig. 9. In or-
der to avoid secondary trajectories, we have imposed an
upper cut on xIP of 0.01. A striking feature of this solu-
tion is the fact that the exponent γ is well below 1, which
can be interpreted as implying an initial gluon distribu-
tion that is singular for β = 1. The explanation for this
result can be inferred from Fig. 10, where we have com-
piled all relevant diagrams, i.e., the β spectrum, the Q2

dependence and αIP , in one figure. The H1 data prefer
a positive slope in Q2, even at a large β, of 0.5. With
the present parametrization, this can only be achieved by
making the gluon contribution (FT

qq̄g) large. Of course,
our rather simple approach is not competitive with the
more sophisticated analysis that has been performed by
H1 [2]. Nevertheless, it mimics the effect of an evolving
singular gluon distribution rather well. The β spectrum in
Fig. 10 shows the dominance of the qq̄g contribution over
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Fig. 12. The second H1 fit, with the same notations as before

the transverse qq̄ contribution, which also spreads into
the large-β region. The longitudinal contribution has not
disappeared completely, but is roughly a factor 2 smaller
than in the fit to the ZEUS data. Since the qq̄g contribu-
tion has only a rather low Pomeron intercept associated
with leading twist, the intercept for the higher-twist con-
tribution is forced to a very high value of 1.3, in order
to accommodate the data. It is completely flat, because

we demanded a positive slope in our fit. Without a lower
limit on n41, the slope would become negative.

Comparing with the ZEUS data, we find again reason-
able agreement between the two data sets. The most sig-
nificant deviation is found for the lower Q2 bins. We point
out that, when one fits the ZEUS data starting from the
H1 data as input, the parameter values always move back
towards those found in the earlier fit, i.e., those in Table 1.
In particular, the ZEUS data do not favour a value of γ
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Fig. 13. The second H1 fit compared to the
ZEUS data

smaller than 1. If one requires a small value of γ, one ob-
tains an acceptable fit only with an unreasonably small
value for x0. If, in addition, x0 is fixed at, say, 10−3, the
χ2 value of the fit is substantially increased.

As we have already said, the H1 fit has a second lo-
cal minimum for a large γ of 8.5. The χ2 is not much
worse than in the previous fit (150 compared to 139). The
parameters if this solution are given in Table 3, and the
comparison with data is shown in Figs. 12 and 13. The β
and Q2 distributions are shown in Fig. 14. On the whole,
the distributions look similar to the ZEUS fit. In more de-
tail, however, there are a few differences: the Q2 shape for
β = 0.5 is completely flat, and the Q2 dependence of n4
is also flat.

Summarizing the H1 fit, we find when fitting our model
to the H1 data a solution which allows for the singular
gluon interpretation, but there is also a second solution
that is close to our model, i.e., consistent with the in-

terpretation described in the context of the ZEUS data.
Since the χ2 values of both solutions are not that different
from each other, one has to search for further consistency
checks: more decisive tests might be provided by compar-
isons with the vector-meson production cross section or
with hard diffractive jets. A singular gluon would give a
strong transverse component, whereas in our model the
longitudinal component is more pronounced.

4 Conclusions

In this analysis of diffraction in deep-inelastic scattering
at HERA, we have proposed a simple parametrization.
Working in the wave-function formalism and starting from
the ‘hard part’ of the diffractive cross section, we have
suggested a simple extrapolation into the ‘soft’ nonper-
turbative region. The main feature of the parameteriza-
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Fig. 14. The results of the second H1 fit

tion is the decomposition of the β spectrum into three
contributions which reside in separate regions with only
little overlap: qq̄g production at low β, transverse qq̄ pro-
duction at medium β, and longitudinal qq̄ production at
large β. These can be derived from the corresponding wave
functions for the qq̄g and qq̄ Fock states. The longitudinal
contribution is higher twist, whereas the other two contri-
butions are leading twist. The very different β dependence
of these three contributions allows to determine their rel-
ative importance through the fits to the data. We fitted
therefore our model to the recent ZEUS and H1 data.

An important result of the fit to the ZEUS data is
the dominance of the Pomeron-quark coupling at larger
β values (β > 0.3). The Pomeron-gluon coupling becomes
substantial at lower β (β < 0.3). The region of large β
(β > 0.9) is dominated by the longitudinal contribution.

The fit to the H1 data leads to two solutions. In or-
der to be open towards the H1 conjecture of a singular
gluon distribution at β = 1 [2], we have allowed, in the
second term of our parametrization, the exponent γ to
be variable. A singular gluon distribution would predict
γ < 1, whereas our model suggests γ = 3, or even a lit-
tle bit higher when Q2 evolution is included. Whereas the
ZEUS fit found only the option of a large γ value, the two
H1 solutions have very different γ values. In the first fit,
γ takes a small value, consistent with the H1 conjecture.
The Pomeron couples predominantly to gluons and only
weakly to quarks. In the second solution, which has al-
most the same probability (χ2 value) as the first one, γ is
much larger and the Pomeron couples mostly to quarks.
The coupling to gluons becomes substantial only at low
β, quite similar to the ZEUS fit.

So far one cannot draw a final conclusion about the
correct interpretation of both data sets. On the one hand,
the conjecture of a singular gluon seems unlikely, in view
of the ZEUS data. On the other hand, our parametrization
with the two-gluon exchange as a model for the Pomeron
can describe both data sets. More insight into the final
state is needed, which could, for example, be provided
by careful analyses of vector meson production and/or
diffractively-produced jets.
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